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Abstract—Parallel coordinate plots (PCPs) are a
prevalent method to interpret the relationship between
the control parameters and metrics. PCPs deliver such
an interpretation by color gradation based on a single
metric. However, it is challenging to provide such a
gradation when multiple metrics are present. Although
a naive approach involves calculating a single metric
by linearly weighting each metric, such weighting is
unclear for users. To address this problem, we first
propose a principled formulation for calculating the
optimal weight based on a specific preferred metric
combination. Although users can simply select their
preference from a two-dimensional (2D) plane for bi-
metric problems, multi-metric problems require intu-
itive visualization to allow them to select their prefer-
ence. We achieved this using various radar charts to
visualize the metric trade-offs on the 2D plane reduced
by UMAP. In the analysis using pedestrian flow guid-
ance planning, our method identified unique patterns of
control parameter importance for each user preference,
highlighting the effectiveness of our method.

Index Terms—Visualization, High-Dimensional Data
Visualization, Parallel Coordinate Plots, Real-World
Application

I. INTRODUCTION

In the real world, decision makers often need to explain
the relationship between the control parameters and their
effects on the metrics of interest. For example, human flow
simulation, which attempts to mimic human flow in a real
environment, has various control parameters that must be
adapted by decision makers such that the real human flow
becomes idealistic [21]. Decision making is particularly
challenging when many control parameters exist.

Parallel coordinate plots (PCPs) [5] are among the
most prevalent methods for interpreting the relationship
between potentially high-dimensional control parameters
and metrics of interest. PCPs draw polylines where each
polyline represents the control parameter values and their
corresponding metric values. In particular, each polyline is
colored based on a metric value such that decision makers
can distinguish the pattern in the performant control
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Fig. 1. Conceptual visualization of the preference-optimal weights

in a bi-metric problem. For problems with three or more metrics, we
provide additional visual support using radar charts as described in
Section III. Left: A set of bi-metrics in the 2D plane. Black dots
represent the observed bi-metrics, whereas the black line represents
the approximated Pareto front. In principle, all the observations on
the approximated Pareto front are equally performant considering
multi-objective optimization. Right: Users provide their preference
by selecting a point, e.g., the red star, on the approximated Pareto
front. Our proposition, cf. Section I1I, enables calculating the optimal
weights given the choice. For example, if the user selects the red star,
each observation can be colored as in the right figure, where blue is
better and yellow is worse under the user’s choice. By doing so, we
can rank the Pareto solutions based on the user preference.

parameters. However, practitioners often encounter multi-
metric problems, which have multiple metrics to consider,
and the coloring of PCPs is unclear owing to the lack of a
unique metric, shown in Figure 1.

To this end, we propose a mathematical formulation
to color PCPs for multi-metric problems based on a user
preference. Our formulation calculates the optimal weights
to obtain the weighted average of each metric, allowing us
to color PCPs based on a single weighted metric. Although
this formulation provides a principled way to calculate a
single weighted metric in general problems, selecting an
ideal trade-off between each metric is not trivial for users,
particularly when more than two metrics are present. To
address this problem, we provide visual support combined
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Fig. 2. Example of PCP. Each polyline shows a control parameter
vector used in an evaluation and its metric values. Each vertical axis
represents either a control parameter or a metric.

with dimension reduction and radar charts.

Through experiments, we demonstrated the effective-
ness of the proposed algorithm using pedestrian flow
simulation data. Our analysis identified the important
control parameters for improving various trade-offs. Im-
portantly, different trade-offs exhibit different patterns of
important control parameters, showing the effectiveness of
our method.

In summary, our contributions are as follows:

1) a novel formulation to calculate the optimal weights

for a single weighted metric given user feedback,

2) intuitive visual support to allow users to select their
preferences even for multi-metric problems using
radar charts and UMAP, and

3) the demonstration using a pedestrian flow simulator
that shows the effectiveness of our proposed method.

II. BACKGROUND
A. Multi-Metric Problems

A multi-metric problem is controlled by the parameter
vector XA == [A,---,Ap] € A= Ay x --- x Ap C RP,
where Ay C R denotes the domain of the d-th control
parameter for d € [D] = {1,2,---,D}. Examples of
the control parameters include the ratio of pedestrians
to be allocated to a certain route and the start time
of pedestrian movement in a pedestrian flow simulation.
Each control parameter A is evaluated using the metrics
FfN) = [f1, -, far] € RM to minimize, where M denotes
the number of metrics. For example, we may evaluate a
simulation with the total duration of an evacuation and
how crowded each route. This study aims to visualize
some patterns of promising control parameters based on
evaluated results, i.e., a set of control parameters and the
corresponding metrics, {(A™, £™)1N_ where N denotes
the number of evaluated control parameter vectors and

F = ),
B. Parallel Coordinate Plots (PCPs)

Parallel coordinate plots (PCPs) [5] visualize each con-
trol parameter vector and the corresponding metric values

as a polyline. Figure 2 illustrates PCPs. Each polyline
passes through each vertical axis, representing what value
each control parameter and each metric had. Since perfor-
mant results are often of interest, we color each polyline
differently depending on how performant each polyline is.
Although such colorization is straightforward for a single-
metric problem, as PCPs can be simply colored by the
metric, it is not trivial for a multi-metric problem. This
motivated our study.

C. Pareto Solutions and Pareto Front

In practice, Pareto optimality defines optimality in
multi-metric problems. Given a set of multiple metrics
F = {f™}N_ | the Pareto solutions of the metric set is
P={fcF|Vf cF,f #£F} where f < f represents
the dominance of f over f, implying f/, < f, for all
m € [M] and f], < fp for some m € [M]. The Pareto
front of F is the hypercurve where the Pareto solutions
are supposed to be distributed. Watanabe [16] provides
further details.

III. PARALLEL COORDINATE PLOTS FOR
MUuULTI-METRIC PROBLEMS

In this section, we first discuss PCPs for bi-metric prob-
lems and generalize them to higher-dimensional problems.
For both setups, we considered coloring PCPs based on
user preference feedback and calculated a single weighted
metric, i.e., a linear combination of each metric value, us-
ing the optimal weights computed from the user feedback.
Although user feedback can be easily provided by clicking
on a preferred solution on the 2D plane, it is not trivial
to achieve this for multi-metric problems, leading to our
novel proposition in the combination of UMAP and radar
charts.

A. Preference Optimal Weight Calculation for Bi-Metric
Problems

In principle, PCPs require a single metric to color each
polyline. Therefore, we propose a method for calculating
the weight of each metric. Specifically, we color each
polyline based on a single weighted metric ¢q(A) =
27]\,{:1 Won frn(A) where w = {w,, }M_, denotes the weight
vector subject to 27]\7{:1 Wy, = 1. We assume that the
Pareto front F is represented as a strict convex function
g : [fmin) fmax] 5 R in the 2D plane where fi, fax are
the minimum and maximum of the first metric, and user
feedback is provided in the form of (f}, g(f*)). Thus, the
following holds:

Proposition 1. Assume that the optimal weights are de-
fined such that a single metric g« (X) subject to fo > g(f1)
achieves optimality at the user-specified point (f1, g(fi)),
then the optimal weights are calculated as follows:
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Fig. 3. Conceptual visualization of Proposition 1. The black dots
represent each evaluated result, whereas the black line represents the
approximated Pareto front fo = g(f1). The three different red lines
represent the level sets, each with a different single weighted metric
value. As shown by the red star, if the approximated Pareto front is
strictly convex, the minimum possible ¢ is achieved when the level
set is tangent to the approximated Pareto front. In our example, this
is when we take co.

«— minimize

Proof. Let Lo, (c) be the level set {(f1, f2)|w1f1 + wafo =
¢} and assume that ¢’ is the derivative of g. Since wy f1 +
wa fo = ¢ can be transformed into fo = h(f1) = fﬂf +
w% and g( fl) h(f1) is also a strict convex functlon the
minimum ¢*, which achieves L,,(c) # (), is obtained when
g/(fl) - h/(fl) =0, ie, g/(fl) = _%’ and minfl g(fl) -
h(f1) = 0 hold. Owing to strict convexity, g(f1) — h(f1)
becomes minimum at the point where ¢'(f1) — h'(f1) =0
holds As the minimum must be at (f1 L9(f1), 9'(ff) =
* must hold. By solving ¢'(f#*) = ; and wi+ws =1,

(=12 g(f(f)), T (fu)) Note that Pareto
optimality in 2D guarantees that the Pareto front g(f)
decreases monotonically, resulting in ¢'(f1) < 0= ¢'(f1)—
1 # 0. Since the optimality at the user-specified point, i.e.,

Loy (wi fit+ws f31) = {(f1, f3)}, holds, this completes the

proof. O

we obtam w* =

An intuitive proof of this is provided in Figure 3.
The figure shows three level sets Lq,(c1), which has two
intersections with fo > g(f1), Lw(ce), which is tangent
to fo > ¢g(f1), and Ly(c3), and does not have any
intersection with fa > ¢(f1) where ¢; < ¢a < ¢ as can be
derived trivially from the hierarchical relationship of the
intercepts. The proof states that owing to strict convexity
of g, there exists a level set that is tangent to fo > g(f1)
and contains a unique point.

In this study, we use g(f1) = fo = f1 — + ¢, where
a > f®n and b > 0, for the approximation and fit the
parameters a, b, ¢ by minimizing the squared error.

B. Preference Optimal Weight Calculation for Multi-
Metric Problems

Given a user-specified point, the optimal weights can be
calculated in a manner similar to that in Proposition 1.
Let g(f) = b be the approximated Pareto front defined on
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Fig. 4. Visual support to select a multi-metric trade-off. Left: Pareto
solutions in the space reduced by UMAP. Pareto solutions in each
lattice are summarized by a radar chart. Right: Radar chart that
shows the mean Pareto solutions in each lattice. Each radar chart
shows how good each metric is. The larger a radar chart is, the better
the Pareto solutions in the lattice are.

[fin gmax] o ... [fmin fmax] and f* € g=1(b) be the
user-specified point. Thus, the following holds:

Theorem 1. The optimal weights are calculated as fol-
lows:

(2)

w o Vg(f") = (f’)g(f“) ag(f“)>.

ofp 7 Ofu

Proof. Similar to Proposition 1, if f* is on the approxi-
mated Pareto front, which is guaranteed from f* € g=1(b),
the tangential hyperplane at f*, i.e., H == {f|Vg(f*)7

(f — f*) = 0}, satisfies HN {f € g71(b)} = {f*} owing
to strict convexity. This completes the proof. Notably,
the optimal weights are calculated by normalizing each
element of Vg(f") with its summation. O

In our experiment, we use g(f) == H,A,/le(fm —am) = b,
which is the general version of g(f1) = fo = b/(f1 —a)+c,
leading to the following weights:

X b b
w u(ff—al"”’f}(/[—a]\/[) (3)

where we used the gradients of the approximated Pareto
front at f* calculated as follows:

d9(f") 1T/ _ b

Thus, we can color PCPs based on a single weighted
metric, as in bi-metric problems. Recall that although we
chose g(f) = [IM_,(fm — am) = b as the approximated
Pareto front, the choice of the function can be arbitrary as
long as the function is strictly convex and differentiable in
the domain of f. However, it is difficult for users to select
f*, unlike in bi-metric problems. To this end, we propose
visual support that enables users to intuitively select a
trade-off of interest.
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Fig. 5. [Illustration of the proposed method. Left: Radar charts of mean Pareto solutions on the 2D plane reduced by UMAP. Each radar
chart shows the mean Pareto solution in the corresponding lattice, which helps users select their preference intuitively. UMAP enables
radar charts with similar patterns to be located close to each other. The optimal weights are calculated based on the selected radar chart.
Right: PCPs colored based on Radar Chart (a). Blue represents better single weighted metric values, whereas yellow represents worse single

weighted metric values.

C. Visual Support to Select Multi-Metric Trade-off

An overview of our proposition is shown in Figure 4.
To provide visual support, we first reduce the Pareto
solutions P to a 2D plane, which is divided into lattices
at even intervals, using UMAP [10] *. In particular, radar
charts with similar patterns are located close to each other,
making it easier for users to select a radar chart. We then
calculate the mean Pareto solution for each lattice. Finally,
we plot a radar chart for each lattice using the following;:

®)

fho=1- M
T = I
Note that f, is the m-th metric value of the mean Pareto
solutions in a lattice, and fmin fmax are the minimum
and maximum m-th metric values of the Pareto solutions,
respectively. The optimal weights are calculated based on
the user’s choice of a radar chart from the 2D plane, as
shown in Figure 4. The pseudocode for the proposed visual
support is described in Algorithm 1.

After a radar chart is specified, we first calculate the
nearest Pareto solution f“ on the approximated Pareto
front g(f) == [IY_,(fm — am) = b using the sequential
least squares programming in scipy.minimize f. We as-
sume f" is the mean Pareto solution specified by the radar
chart. We then find the nearest Pareto solution by solving
the following:

f* e arg min |7 — f2. (6)
Feg=1(b)
The formulation above is equivalent to arg min ||f" — f]|2
eRM

subject to g(f) = b. Once the nearest Pareto solution
is identified, the optimal weights can be computed easily
using Eq. (2). Using the optimal weights, we color PCPs
as in Figure 5.

*https://github.com/lmcinnes/umap

Thttps://docs.scipy.org/doc/scipy /reference/optimize.
minimize-slsqp.html

Algorithm 1 PCPs for Multi-Metric Problems

Input: evaluated results D := {(A™, )N

1: (1) Initialization
2: Extract the Pareto solutions P from D
Approximate the Pareto front by fitting the parame-
ters {am}h_1,bin g(f) =TIy (fn — am) = b
Apply UMAP to P
for each lattice do
if No solutions in the lattice then
continue
Collect the solutions in the lattice.
Calculate the mean Pareto solution f
10 Transform f into }/ using Eq. (5)
11: Plot a radar chart in the lattice

@

12: (2) PCPs with the optimal weights

13: Select a radar chart

14: Solve Eq. (6) to find the nearest Pareto solution f*
15: Calculate the optimal weights w* based on Eq. (2)
16: Color PCPs based on the optimal weights w*

IV. REAL-WORLD APPLICATION TO PEDESTRIAN
FLOW SIMULATION

A. Problem Setup

In this section, we provide an application example using
CrowdWalk [21] ¥, a pedestrian flow simulator in evacu-
ation guidance. The pedestrian flow in the simulator is
controlled by five control parameters: A1, the time interval
of the start of evacuation, Ay and Az, the percentages of
guidance from the east side to the west side at two different
locations, and A4 and A5, the percentages of guidance to
the underground at two different locations, respectively.

thttps://github.com/crest-cassia/Crowd Walk
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(a) PCPs using the optimal weights by se-
lecting Radar Chart (b) in Figure 5

Fig. 6.

(b) PCPs using the optimal weights by se-
lecting Radar Chart (c) in Figure 5
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(c) PCPs using the optimal weights by se-
lecting Radar Chart (d) in Figure 5

PCPs based on three different radar charts. The PCPs are colored so that blue represents better single weighted metric values and

yellow represents worse single weighted metric values. Left: The weights that put emphasis on fi. A larger A1 improves fi as can be seen
in the red circle. Center: The weights that put emphasis on fa. A smaller A3 or a larger A4 improves f2 as can be seen in the red circles.
Right: The weights that put emphasis on f3. A smaller A5 improves f3 as can be seen in the red circle.

Each control parameter was normalized to [0,1] and we
discretized the domain of each control parameter into
{k/10}+2,, leading to 11° control parameter combinations
overall. We consider three metrics in this problem: f;, the
degree of congestion, f3, the overall evacuation completion
time, and f3, the total traveling distance of pedestrians,
where all the metrics were normalized to [0, 1] for conve-
nience. Note that PCPs visualize the Pareto solutions and
the top-30 observations with respect to the single weighted
metric ¢, (), and we sampled 1000 control parameter
vectors using TPESampler § in Optuna [1] and performed
the simulator with these control parameters to collect the
results. We defer the details of the TPE algorithm to
Watanabe [17] and those of the multi-objective version to
Ozaki et al. [11], [12].

B. Visualization Results

Figure 6 visualizes the PCPs colored based on different
metric trade-offs, which are indicated by (b), (c), and (d)
in Figure 5. Recall that a concentration of PCP lines with
a similar color on a control parameter axis indicates that
the control parameter is the key factor to achieve the
single weighted metric values close to those specified by
the color [20].

The PCPs in Figure 6a put more emphasis on conges-
tion, fj, by selecting Radar Chart (b) in Figure 5. As
marked by the red circle, high values in A\ attract purple
lines. It implies that a longer time interval is important
at the start of evacuation. By doing so, sufficient capacity
will be preserved in the flow line, reducing congestion. The
PCPs in Figure 6b focus more on the overall evacuation
completion time, fa, by selecting Radar Chart (c) in Fig-
ure 5. As shown by the red circles, purple lines concentrate
at low values in A3 and high values in 4. It indicates that
east side guidance in A3 and underground guidance in A4
are essential to reduce the overall evacuation completion
time. Finally, we consider the single weighted metric with

Shttps://optuna.readthedocs.io/en/stable/reference/samplers/
generated /optuna.samplers. TPESampler.html

11

a higher weight on the total traveling distance of pedestri-
ans, f3, by selecting Radar Chart (d) in Figure 5. As can
be seen in the PCPs in Figure 6¢, low A5 is the key factor of
this scenario. It means that the underground route should
be avoided as much as possible at the location controlled
by A5 if the total traveling distance of pedestrians is the
primary objective.

V. RELATED WORK & PRACTICAL CONSIDERATION

The interpretation methods for the relationship between
the control parameters and metrics can be roughly divided
into two main categories: (1) Importance quantification
of each control parameter, and (2) visualization of high-
performance control parameter distribution.

Importance quantification is typically used to reduce
the complexity of the analysis via the control parameter
selection. For example, f~ANOVA [6], PED-ANOVA [20],
and SHAP [9] quantify the contribution of each control
parameter to the variations of the metric of interest. Since
these methods are intended for single-metric problems,
they cannot be immediately applied to multi-metric prob-
lems. To the best of our knowledge, few methods ad-
dress importance quantification for multi-metric problems.
Theodorakopoulos et al. [15] extended f-ANOVA to multi-
metric setups. Although they also focused on the linear
weighting of each metric, cf. Section III, their focus was
to compute the importance of each control parameter
across different weight pairs, requiring users to select the
desirable weights manually. Meanwhile, we focused on
deriving the optimal weights based on the user feedback.
The disadvantage of importance quantification is infor-
mation loss regarding the locations of promising control
parameters. More specifically, this approach compresses
the distribution information of control parameters and
metric values into numerical values, making it difficult
to perform a more accurate analysis. This motivates the
use of PCPs to interpret the patterns in high-performance
control parameters more precisely.

Another approach involves visualizing the distribution
of promising control parameters. In practice, scatter plot



matrices [4] are widely used in this category. However,
as the number of figures increases quadratically, PCPs,
which allow us to view high-dimensional data in a figure,
become more advantageous than scatter plot matrices
for high-dimensional problems. Another example is land-
scape visualization using dimension reduction to a two-
dimensional (2D) plane and a predictive model [8], [13].
PCPs, including variants such as density-based parallel
coordinates [5], are also classified into this category. PCPs
are frequently used in multi-metric problems [2], [7]. How-
ever, these studies did not discuss how to color each
polyline to enhance interpretability regarding the trade-
off between metrics. The goal of this study is to provide
a mathematical formulation to color PCPs based on user
preferences and visual support to allow users to intuitively
provide their preferences.

Practically speaking, these interpretation methods as-
sist in reducing experiment design or black-box optimiza-
tion problems to easier ones. The concrete examples are
control parameter selection by checking the importance
and making some metrics into constraints. The effective-
ness of the former approach is reported by Watanabe
et al. [18], [19], who used PED-ANOVA for this, and
Florea and Andonie [3], who used f~ANOVA for this.
The latter approach is particularly essential for many-
objective problems (M > 4) because most evaluations
achieve Pareto optimality in such a case owing to the
curse of dimensionality. Although this problem is tackled
independently in the context of e constrained-based ap-
proach [14], our method is another effective approach to
make some metrics into inequality constraints, as we can
visually define appropriate thresholds for each metric in
PCPs colored by our method. By relaxing the problems,
finding desirable trade-offs becomes viable in an efficient
manner.

VI. CONCLUSION

This paper proposes a method to color PCPs for multi-
metric problems given user feedback. Our method facili-
tates the user’s selection of metric preferences by display-
ing the Pareto solutions in the 2D plane reduced by UMAP
and metric radar charts at each lattice. By coloring PCPs
based on the user preference, a more intuitive interpreta-
tion of promising control parameters for the specified met-
ric trade-off becomes possible. To verify this, we conducted
a visualization and analysis using simulation results of
evacuation guidance. In the analysis, we considered three
different trade-offs. Interestingly, different control param-
eters were important for each scenario. Although there
have not been any methods to color PCPs effectively in
such a case, we could successfully address this problem and
demonstrate the effectiveness through our application. As
discussed in Section V, our approach has the potential to
contribute to relaxing many-objective problems into fewer-
metric problems with some inequality constraints. Such a
study is a possible future research topic.
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